World Journal of Modelling and Simulation
نویسنده
چکیده
It is quite well known that the diffusers are required for efficient conversion of the dynamic head generated by the impeller in a centrifugal fan. Hence the flow into the diffuser passage plays a crucial role in determining the efficiency of conversion. The flow in the region bounded by the impeller exit and the diffuser entry i.e. the radial clearance space is generally considered to be highly complex. With the development of PIV as well as versatile numerical CFD tools such as moving mesh techniques, it has become possible to arrive at a prudent solution compatible with the physical nature of the flow. Hence, in this work a numerical solution with moving mesh technique is made use of in predicting the real flow behavior, as exhibited when a target blade of the impeller is made to move past a target blade on the diffuser. Many research works both experimental and numerical on the impeller diffuser interactive phenomenon have been undertaken so far. But it is found from the literature that the study on the impeller diffuser interaction as well on the performance of the fan by varying the number of diffuser vanes has not been the focus of attention in these works. Hence a numerical analysis has been carried out in this work to extensively explore impeller-diffuser fluid interaction as well as to predict the flow characteristics of the fan by changing the number of diffuser vanes while keeping the number of impeller blades same. It is found from the analysis that there is an optimum number of diffuser vanes which would yield maximum static pressure recovery and when the diffuser vanes are increased beyond certain number, rotating stall occurs in diffuser flow passages corresponding to the blade passing frequency. Further it is observed from the analysis that smaller the number of diffuser vanes, larger is the pressure fluctuations at the exit flange of the fan which eventually would even out as the number of diffuser vanes are increased.
منابع مشابه
Advance Modelling and Simulation of Industrial Boilers
This paper presents some of the results of the simulation in the radiation section of an industrial boiler using an advanced mathematical model. Calculations are described for the flow, heat transfer, and chemical reaction processes occurring within a gas-fired cylindrical furnace. The calculation procedure is a two dimensional one in which the main hydrodynamic variables are the velocity and s...
متن کاملSynthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution
Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...
متن کاملModelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool
Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...
متن کاملSimulation of Pedestrian Dynamics with Macroscopic and Microscopic Mathematical Models
Here, we collect two parts of a research project on the pedestrian flow modeling. Rapid growth in the volume of public transport and the need for its reasonable, efficient planning have made the description and modeling of transport and pedestrian behaviors as important research topics in the past twenty years. First, we present a macroscopic model for the pedestrian flow based on continuum mec...
متن کاملEmergency department resource optimisation for improved performance: a review
Emergency departments (EDs) have been becoming increasingly congested due to the combined impacts of growing demand, access block and increased clinical capability of the EDs. This congestion has known to have adverse impacts on the performance of the healthcare services. Attempts to overcome with this challenge have focussed largely on the demand management and the application of system wide p...
متن کاملReliability Modelling of the Redundancy Allocation Problem in the Series-parallel Systems and Determining the System Optimal Parameters
Considering the increasingly high attention to quality, promoting the reliability of products during designing process has gained significant importance. In this study, we consider one of the current models of the reliability science and propose a non-linear programming model for redundancy allocation in the series-parallel systems according to the redundancy strategy and considering the assump...
متن کامل